

Welcome to WDL-AID’s documentation!

Generate documentation for the inputs of WDL [http://www.openwdl.org/] workflows, based on the
parameter_meta [https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md#parameter-metadata] information defined in the WDL file.

WLD-AID is developed by the Sequencing Analysis Support Core at the
Leiden University Medical Center [https://www.lumc.nl/].

Quick start

Installation

WDL-AID can be installed using:

pip install wdl-aid

Basic usage

Running WDL-AID requires the following steps:

	Add parameter_meta [https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md#parameter-metadata] sections to you tasks and workflows.
These should be objects containing both a description and category:

parameter_meta {
 input_name: {
 description: "A description of what value should be provided and is what it is used for.",
 category: "required"
}

The available categories in the default template are:

	required

	common

	advanced

	other

Required inputs are automatically detected and their noted category will be
overwritten with required.

	Once installed, WDL-AID can be run using the following command:

wdl-aid <workflow.wdl> -o docs.md

This will generate the file docs.md, containing the generated
documentation.

Reporting bugs and feature requests

Please report any bugs, issues or pull requests on the
github issue tracker [https://github.com/biowdl/wdl-aid/issues].

Index

Index

Usage

Preparing your WDL files

Before the documentation can be generated, each input in your WDL [http://www.openwdl.org/] file must
be given a description and category. This is done using WDL’s parameter_meta [https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md#parameter-metadata]
section:

parameter_meta {
 name_of_input: {
 description: "Some description of the input",
 category: "some category"
 }
}

These fields (description and category may also be called differently,
but you will have to set some additional options when running WDL-AID, see
Custom description and category keys.

WDL-AID will separate the inputs by category, so each category may be rendered
in its own section. Required inputs are automatically detected and assigned
the required category, overwriting the one noted in the parameter_meta
section.

The default template supports the following categories:

	required

	common

	advanced

	other

Excluding inputs

In some cases there may be inputs which should not be included in the
documentation, eg. when using a sub-workflow which provides options which make
no sense in the context of the overarching workflow. You can tell WDL_AID to
omit certain inputs by adding the following to your workflow’s meta [https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md#metadata] section:

WDL_AID: {
 exclude: ["input_name", "call.input_name"]
}

The inputs added here may be of the workflow or task containing the meta section
or from any call made inside of the workflow. Be sure to use the input_names
qualified relative to this workflow, ie. input_name for inputs of the
task/workflow itself, call_name.input_name for inputs of calls,
call_name.sub_call_name.input_name for calls inside of sub-workflows, etc.

Metadata

The meta [https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md#metadata] section of your workflow may also be used to pass additional
information along to WDL-AID. The entire meta section of the workflow
that WDL-AID gets called on is passed to the template unaltered.
WDL-AID will also retrieve all authors from the meta sections of every called
task and workflow and pass these along.

The default template supports the following meta section entries:

	description (only for the root workflow)

	authors (also for sub-workflows and tasks)

This is expected to be an object containing the following
fields for each author:

	name

	email (optional)

	organization (optional)

eg.

meta {
 authors: [
 {
 name: "Eddard Stark",
 email: "StarkNed@winterfell.westeros",
 organization: "The North"
 },{
 name: "Jon Snow",
 email: "j.snow@nightswatch.westeros",
 organization: "The Night's Watch"
 }
]
}

Running WDL-AID

WDL-AID can be run with the following command:

wdl-aid <workflow.wdl>

This will print the generated documentation to stdout. This will be
markdown formatted text when using the default template.

Writing to a file

To write the output to a file the following option can be used:

	
-o OUTPUT, --output OUTPUT

	The file to write the generated documentation to.

Fallback/default values

If no description or category is defined then WDL-AID will fallback to a default
value. By default these values equal ??? and other respectively.
You may override these fallback values using the following options:

	
--fallback-description FALLBACK_DESCRIPTION

	The fallback value for when no description is defined for a given input.

	
--fallback-category FALLBACK_CATEGORY

	The fallback value for when no category is defined for a given input.

In some cases a parameter_meta [https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md#parameter-metadata] entry may be defined, but it does not contain the
an object with a description item. By default the fallback values will get used
in these cases. However, alternatively you can use the entirety of the defined
parameter_meta entry as description value using the following flag:

	
--fallback-description-to-object

	Use the entire parameter_meta object as description if the description key is not found.

Custom description and category keys

In case your parameter_meta [https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md#parameter-metadata] entries use different keys than description
and category to provide the description and category (respectively) of the
inputs, you can use the following options to inform WDL-AID of which keys to
look for:

	
-c CATEGORY_KEY, --category-key CATEGORY_KEY

	The key used in the parameter_meta sections for the input category.

	
-d DESCRIPTION_KEY, --description-key DESCRIPTION_KEY

	The key used in the parameter_meta section for the input description.

Keeping original categories for required inputs

If you wish to retain the categories noted in the parameter_meta [https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md#parameter-metadata] sections for
the required input, rather then having the overwritten with required then
you can use the following flag:

Custom templates

You can provide a custom template using the following option. This template
should be a Jinja2 [https://jinja.palletsprojects.com/] template.

	
-t TEMPLATE, --template TEMPLATE

	A Jinja2 template to use for rendering the documentation.

See Custom templates for more details on making a custom template.

Extra data

It is possible to pass extra data along to the template. This can be done by
providing the following option with a json file which contains this extra data.

	
-e EXTRA, --extra EXTRA

	A JSON file with additional data to be passed to the jinja2 rendering engine.

Strict mode

WDL-AID has an option to run in a “strict” mode. This entails that WDL-AID will
error if any inputs are missing a parameter_meta section. This may be useful
as part of CI testing, allowing you to ensure that all inputs will always be
documented.

	
--strict

	Error if the parameter_meta entry is missing for any inputs.

Custom templates

WDL-AID uses Jinja2 [https://jinja.palletsprojects.com/] to generate documentation files. By default a template
is provided to Jinja2 which comes packaged with WDL-AID. This default template
will result in a markdown file. If you wish to generate a differently formatted
file (eg. html) or simply want to change the content of the document then you
can provide a custom Jinja2 template. This custom template can be passed to
WDL-AID using the -t option.

The following variables are made available to the template:

	workflow_name: The name of the workflow.

	workflow_file: The path given as input to WDL-AID.

	workflow_authors: A list of author information, taken from the
authors field in the meta section. If this field does not contain
a list its value will be wrapped in one.

	workflow_all_authors: A list of author information taken from the
authors fields from the workflow and called sub-workflows and tasks.

	workflow_meta: A direct copy of the workflow’s meta section.

	excluded_inputs: A list of fully-qualified inputs which will are available,
but will be excluded from the rendering process.

	wdl_aid_version: The version of WDL-AID used

	Per category a list of dictionaries. Each of these dictionaries will
describe an input and contains the following keys:

	name: The (fully qualified) name of the input.

	type: The WDL value type of the input (eg. String? or
Pair[Int, Boolean]).

	default: The default value of the input. If an input has no
default, then None.

	description: The description of the input as specified in the
parameter_meta sections in the WDL file(s).

	extra: Whatever value is contained within the JSON file
provided though the -e option, otherwise None.

Minimalistic Example

The following is a small example of a template that could be used with
WDL-AID.

<html>
<head>
 <title>{{ workflow_name }}</title>
 <style>
 ul { list-style: none; }
 li { background: #e5e5e5; padding: 10px; }
 li:nth-child(odd) { background: #f0f0f0; }
 dt { font-weight: bold }
 </style>
</head>
<body>
 <h1>{{ workflow_name }}</h1>
 {{ workflow_description }}
 <h2>Required Inputs</h2>

 {% for ri in required|sort(attribute='name') %}

 <dl>
 <dt>name</dt>
 <dd>{{ ri.name }}</dd>
 <dt>type</dt>
 <dd>{{ ri.type }}</dd>
 <dt>default value</dt>
 <dd>{{ ri.default }}</dd>
 <dt>description</dt>
 <dd>{{ ri.description }}</dd>
 </dl>

 {% endfor %}

</body>
</html>

Changelog

v0.1.1

	Inputs without a default will now be given a None value in the default
field passed to jinja2, instead of a string containing None.
This should not impact generated documents (unless specific logic dealing
with None values is used), as jinja will still render None values as
None.

v0.1.0

	initial release

Index

 Symbols
 | W

Symbols

 	
 	
 --category-key CATEGORY_KEY

 	wdl-aid command line option

 	
 --description-key DESCRIPTION_KEY

 	wdl-aid command line option

 	
 --extra EXTRA

 	wdl-aid command line option

 	
 --fallback-category FALLBACK_CATEGORY

 	wdl-aid command line option

 	
 --fallback-description FALLBACK_DESCRIPTION

 	wdl-aid command line option

 	
 --fallback-description-to-object

 	wdl-aid command line option

 	
 --output OUTPUT

 	wdl-aid command line option

 	
 	
 --strict

 	wdl-aid command line option

 	
 --template TEMPLATE

 	wdl-aid command line option

 	
 -c CATEGORY_KEY

 	wdl-aid command line option

 	
 -d DESCRIPTION_KEY

 	wdl-aid command line option

 	
 -e EXTRA

 	wdl-aid command line option

 	
 -o OUTPUT

 	wdl-aid command line option

 	
 -t TEMPLATE

 	wdl-aid command line option

W

 	
 	
 wdl-aid command line option

 	--category-key CATEGORY_KEY

 	--description-key DESCRIPTION_KEY

 	--extra EXTRA

 	--fallback-category FALLBACK_CATEGORY

 	--fallback-description FALLBACK_DESCRIPTION

 	--fallback-description-to-object

 	--output OUTPUT

 	--strict

 	--template TEMPLATE

 	-c CATEGORY_KEY

 	-d DESCRIPTION_KEY

 	-e EXTRA

 	-o OUTPUT

 	-t TEMPLATE

 nav.xhtml

 Table of Contents

 		
 Welcome to WDL-AID’s documentation!

_static/file.png

_static/minus.png

_static/plus.png

